Усилители низкой частоты на полевых транзисторах. Усилитель звука на полевых транзисторах Предварительный усилитель на полевых транзисторах

Главная / Браузеры

Старое, но золотое

Старое, но золотое

Схемотехника усилителей уже прошла в своем развитии виток спирали и сейчас мы наблюдаем "ламповый ренессанс". В соответствии с законами диалектики, которые нам так упорно вдалбливали, следом должен наступить "ренессанс транзисторный". Сам факт этого неизбежен, ибо лампы, при всей своей красоте, уж очень неудобны. Даже дома. Но у транзисторных усилителей накопились свои недостатки...
Причину "транзисторного" звучания объяснили еще в середине 70-х - глубокая обратная связь. Она порождает сразу две проблемы. Первая - переходные интермодуляционные искажения (TIM-искажения) в самом усилителе, вызванные запаздыванием сигнала в петле обратной связи. С этим бороться можно только одним путем - увеличением быстродействия и усиления исходного усилителя (без обратной связи), что чревато серьезным усложнением схемы. Результат трудно прогнозируется: то ли будет, то ли нет.
Вторая проблема - глубокая обратная связь сильно снижает выходное сопротивление усилителя. А это для большинства громкоговорителей чревато возникновением тех самых интермодуляционных искажений прямо в динамических головках. Причина - при перемещении катушки в зазоре магнитной системы значительно изменяется ее индуктивность, поэтому импеданс головки тоже изменяется. При низком выходном сопротивлении усилителя это приводит к дополнительным изменениям тока через катушку, что и порождает неприятные призвуки, ошибочно принимаемые за искажения усилителя. Этим же можно объяснить парадоксальный факт, что при произвольном выборе динамиков и усилителей один комплект "звучит", а другой - "не звучит".

секрет лампового звука =
высокое выходное сопротивление усилителя
+ неглубокая обратная связь
.
Однако аналогичных результатов можно добиться и с транзисторными усилителями. Все приводимые ниже схемы объединяет одно - нетрадиционная и позабытая нынче "несимметричная" и "неправильная" схемотехника. Однако так ли она плоха, как ее представляют? Например, фазоинвертор с трансформатором - настоящий Hi-End! (рис.1) А фазоинвертор с разделенной нагрузкой (рис.2) заимствован из ламповой схемотехники...
рис.1


рис.2


рис.3

Эти схемы сейчас незаслуженно забыты. А зря. На их основе, используя современную элементную базу, можно создать простые усилители с весьма высоким качеством звучания. Во всяком случае, то, что мне доводилось собирать и слушать, звучало достойно - мягко и "вкусно". Глубина обратных связей во всех схемах невелика, есть местные ООС, а выходное сопротивление значительно. Нет и общей ООС по постоянному току.

Однако приведенные схемы работают в классе B , поэтому им присущи "переключательные" искажения. Для их устранения необходима работа выходного каскада в "чистом" классе A . И такая схема тоже появилась. Автор схемы - J.L.Linsley Hood. Первые упоминания в отечественных источниках относятся ко второй половине 70-х годов.


рис.4

Основной недостаток усилителей класса A , ограничивающий область их применения - большой ток покоя. Однако для устранения переключательных искажений есть и другой путь - использование германиевых транзисторов. Их достоинство - малые искажения в режиме B . (Когда-нибудь я напишу сагу, посвященную германию.) Другой вопрос, что найти сейчас эти транзисторы непросто, да и выбор ограничен. При повторении следующих конструкций нужно помнить, что термостойкость германиевых транзисторов невысока, поэтому не нужно экономить на радиаторах для выходного каскада.


рис.5
На этой схеме - интересный симбиоз германиевых транзиcторов с полевым. Качество звучания, несмотря на более чем скромные характеристики, очень хорошее. Чтобы освежить впечатления четвертьвековой давности, я не поленился собрать конструкцию на макете, слегка модернизировав ее под современные номиналы деталей. Транзистор МП37 можно заменить кремниевым КТ315, поскольку при налаживании все равно придется подбирать сопротивление резистора R1. При работе с нагрузкой 8 Ом мощность возрастет примерно до 3,5 Вт, емкость конденсатора C3 придется увеличить до 1000 мкФ. А для работы с нагрузкой 4 Ом придется снизить напряжение питания до 15 вольт, чтобы не превысить максимальную мощность рассеяния транзисторов выходного каскада. Поскольку общая ООС по постоянному току отсутствует, термостабильность достаточна только для работы в домашних условиях.
Две следующие схемы имеют интересную особенность. Транзисторы выходного каскада по переменному току включены по схеме с общим эмиттером, поэтому требуют небольшого напряжения возбуждения. Не требуется и традиционная вольтодобавка. Однако для постоянного тока они включены по схеме с общим коллектором, поэтому для питания выходного каскада использован "плавающий" источник питания, не связанный с "землей". Поэтому для выходного каскада каждого канала необходимо использовать отдельный источник питания. В случае применения импульсных преобразователей напряжения это не проблема. Источник питания предварительных каскадов может быть общим. Цепи ООС по постоянному и переменному току разделены, что в сочетании с цепью стабилизации тока покоя гарантирует высокую термостабильность при малой глубине ООС по переменному току. Для СЧ/ВЧ каналов - прекрасная схема.

рис.6


рис.7 Автор: А.И.Шихатов (составление и комментарии) 1999-2000
Опубликовано: сборник "Конструкции и схемы для прочтения с паяльником" М. Солон-Р, 2001, с.19-26.
  • Схемы 1,2,3,5 были опубликованы в журнале "Радио".
  • Схема 4 позаимствована из сборника
    В.А.Васильев "Зарубежные радиолюбительские конструкции" М.Радио и связь,1982, с.14...16
  • Схемы 6 и 7 позаимствованы из сборника
    Й. Боздех "Конструирование дополнительных устройств к магнитофонам" (пер. с чешск.) М.Энергоиздат 1981, с.148,175
  • Подробно о механизме возникновения интермодуляционных искажений: Должен ли УМЗЧ иметь малое выходное сопротивление?
Оглавление

УМЗЧ на полевых транзисторах

УМЗЧ на полевых транзисторах

Применение полевых транзисторов в усилителе мощности позволяет значительно повысить качество звучания при общем упрощении схемы. Передаточная характеристика полевых транзисторов близка к линейной или квадратичной, поэтому в спектре выходного сигнала практически отсутствуют четные гармоники, кроме того, происходит быстрый спад амплитуды высших гармоник (как в ламповых усилителях). Это позволяет применять в усилителях на полевых транзисторах неглубокую отрицательную обратную связь или вовсе отказаться от нее. После завоевания просторов "домашнего" Hi-Fi полевые транзисторы начали наступление на автозвук. Публикуемые схемы изначально предназначались для домашних систем, но может, кто-то рискнет применить заложенные в них идеи в автомобиле...


рис.1
Эта схема уже считается классической. В ней выходной каскад, работающий в режиме AB, выполнен на МДП-транзисторах, а предварительные каскады - на биполярных. Усилитель обеспечивает достаточно высокие показатели, но для дальнейшего улучшения качества звучания биполярные транзисторы следует полностью исключить из схемы (следующая картинка).


рис.2
После того, как исчерпаны все резервы повышения качества звучания, остается только одно - однотактный выходной каскад в "чистом" классе А. Ток, потребляемый предварительными каскадами от источника более высокого напряжения и в этой, и предыдущей схеме - минимален.


рис.3
Выходной каскад с трансформатором - полный аналог ламповых схем. Это на закуску... Интегральный источник тока CR039 задает режим работы выходного каскада.


рис.4
Однако широкополосный выходной трансформатор - достаточно сложный в изготовлении узел. Изящное решение - источник тока в цепи стока - предложено фирмой

Введение

Мне захотелось построить усилитель со следующими параметрами:

1. без ООС, так называемый вариант «0-NFB» (zero negative feed back)
2. чистый класс А
3. однотактный

Нельсон Пасс (Nelson Pass) проделал огромную работу в этом направлении при строительстве своего усилителя «Zen», но я решил пойти еще дальше! Я построю «Усилитель Без Деталей» - Zero Component Amplifier (ZCA).

Думаете, я пытался найти Священный Грааль в усилительной схемотехнике, этакий прямой кусок серебрянного провода, дающий чистое усиление без искажений?

Class-A 2SK1058 MOSFET Amplifier

Несомненно, чтобы усилитель назывался усилителем, он должен содержать активные компоненты, обеспечивающие усиление. Меня всегда восхищали однотактные ламповые усилители. Как такое вообще возможно? Посмотрите, одна лампа, пара резисторов и выходной трансформатор. Поэтому я и решил создать усилитель на полевом транзисторе, придерживаясь такой же простоты дизайна.

Один канальный полевой униполярный МОП-транзистор, пригодный для аудио, парочка резисторов и конденсаторов, и конечно же умощненный хорошо «профильтрованный» блок питанния. Схема такого усилителя представлена на рис. 1.


Рис. 1: Схема однотактного усилителя класса A на MOSFET-е

Применен полевик 2SK1058 от Hitachi. Это N-канальный MOSFET. Внутренняя схема и распиновка для 2SK1058 представлена на рис. 2.


Рис. 2: Hitachi 2SK1058 N-Channel MOSFET

Я использовал конденсаторы Sprague Semiconductor Group во входных цепях и большие электролиты на выходе с «бутербродом» из полиэстерного конденсатора на 10 мф. Все резисторы, если не указано иначе, на 0,5 Ватт. Четыре 10-ти Ваттных проволочных резистора работают в качестве нагрузки. Внимание, эти резисторы рассеивают около 30 Ватт и становятся чрезвычайно горячими даже при простое усилителя. Да, это класс А, а низкий КПД - расплата. Он съедает 60 Ватт, чтобы выдать ок. 5Вт! Мне пришлось использовать мощный и качественный радиатор с эффективным теплоотведением (0.784 °C/Ватт).


Фото 1: Печатная плата усилителя в сборе

Блок питания усилителя

Блок питания состоит из трансформатора мощностью 160 Ватт, нагруженного на 25-ти Амперный выпрямительный мост, и обеспечивает напряжени ок. 24 Вольт. Используется П-образный фильтр (конденсатор - дроссель - конденсатор) состоящий из электролитов на 10.000 Мф и 5-ти Амперных дросселей индуктивностью 10 мГн.


Рис. 3: Схема блока питания


Фото 2: Усилитель в сборе

Фото 3: Усилитель в сборе, вид сзади

Наладка усилителя

Смещение задаётся резистором на 1 мОм и потенциометром на 100 кОм. Просто установите потенциометром половину напряжения питания в точке соединения MOSFET-а и нагрузочного резистора.

Звучание

Я прослушивал мой усилитель с ламповым предусилителем на 12AU7, т. к. он обеспечивает наиболее чистый звук. Я понятия не имею об коэффициентах искажений этого усилителя и т.п. цифрах, лишь скажу, что у него точная звукопередача и деликатно текстурированный тембральный окрас.

Для работы с усилителем требуется высокочувствительная, эффективная аккустика, т. к. он выдаёт ок. 5 Ватт RMS (и до 15 Ватт на пиках, что я ясно наблюдал на экране осциллографа). Передача басса оказалась значительно лучшей, чем можно было ожидать от такого решения. Усилитель с легкостью раскачивает мои 12-ти дюймовые трех-полосные колонки.

На рисунке показана схема 50 Вт усилителя с выходными полевыми MOSFET транзисторами.
Первый каскад усилителя представляет собой дифференциальный усилитель на транзисторах VT1 VT2.
Второй каскад усилителя состоит из транзисторов VT3 VT4. Оконечный каскад усилителя состоит из МОП-транзисторов IRF530 и IRF9530. Выход усилителя через катушку L1 соединен с нагрузкой 8 Ом.
Цепь состоящий из R15 и C5 предназначена для снижения уровня шума. Конденсаторы С6 и С7 фильтры питания. Сопротивление R6 предназначено для регулировки тока покоя.

Примечание:
Используйте двухполярный источник питания +/-35В
L1 состоит из 12 витков медного изолированного провода диаметром 1мм.
С6 и С7 должен быть рассчитан 50В, остальные электролитические конденсаторы на 16В.
Необходим радиатор для МОП-транзисторов. Размером 20x10x10 см из алюминия.
Источник — http://www.circuitstoday.com/mosfet-amplifier-circuits

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 19.03.2019

    За основу регуляруемого стабилизатора свята схема со траницы https://сайт/?p=57426 , схема достаточно простая и содержит минимальный набор элементов. Выходное напряжение регулируемого стабилизатора можно регулировать от 0 до 25 В при максимальном токе 3 А. Используя Arduino можно заметно расширить функционал стабилизатора, сделать индикацию и защиту по току и КЗ, добавив …

  • 22.11.2014

    Описанный в статье микшер рассчитан на 3 линейных входа и 3 микрофонных входа. Микшер выполнен из общедоступных радиоэлементах. Микшер может работать с динамическими микрофонами с сопротивлением 200-1000 Ом, так же возможно применение конденсаторного микрофона, линейные входы имеют чувствительность 200 мВ. У микшере возможно приминение следующих ОУ: LM741, LF351, TL071 и NE5534. …

  • Если громкость звука не самое важное, а предпочтение отдается качеству звучания, то этот УМЗЧ будет как раз кстати. Выходной каскад, выполненный по двухтактной схеме на комплементарной паре мощных полевых транзисторов с изолированным затвором обеспечивает качество звучания субъективно сродни «ламповому».

    Да объективные характеристики весьма не плохи:

    Усилитель звука на полевых транзисторах


    Предварительная часть низкой частоты выполнена на А1. Сигнал с его выхода поступает на выходной двухтактный каскад на противоположных полевых транзисторах с изолированным затвором — 2SK1530 (n-канал) и 2SJ201 (р-канал). На затворах транзисторов создается необходимое напряжение смещения с помощью резисторов R8, R9 и диодов VD3 и VD4.

    Диоды устраняют искажения «ступенька», создавая исходную разность потенциалов между затворами полевых транзисторов.Стабилизирующее напряжение ООС снимается с выхода выходного каскада и через цепь R4-C6 поступает на инверсный вход операционного усилителя А1, который является так же и входом .

    Коэффициент усиления по напряжению зависит от соотношения сопротивлений резисторов R1 и R4. Изменяя сопротивление R1 можно в достаточно широких пределах регулировать чувствительность этого УМЗЧ, приспособляя его под выходные параметры имеющегося предварительного УЗЧ. При этом следует знать, что, как обычно, увеличение чувствительности ведет в увеличению искажений. Так что здесь должен быть разумный компромисс.

    Напряжение питания ±25В, можно использовать нестабилизированный источник, но обязательно хорошо отфильтрованный от пульсаций фона переменного тока.Операционный усилитель питается двуполярным напряжением ±18V от двух параметрических стабилизаторов на основе стабилитронов VD1 и VD2. Вместо транзистора 2SK1530 можно использовать более старые 2SK135, 2SK134, Вместо транзистора 2SJ201 можно использовать 2SJ49, 2SJ50.

    Транзисторы должны быть установлены на теплоотвод. Транзисторы 2SK1530 и 2SJ201 имеют такую конструкцию корпуса, что радиаторной пластины, контактирующей с кристаллом у них нет, их корпус выполнен из керамо-пластика, хорошо проводящего тепло, но не проводящего электричества. Поэтому транзисторы можно установить на общий радиатор. Если же будут использованы транзисторы с радиаторными пластинами, имеющими электрический контакт с кристаллом, то необходимо их установить на разные радиаторы, изолированные друг от друга или использовать тщательное изолирование с помощью слюдяных прокладок.

    В любом случае, между теплоотводящей поверхностью корпуса транзистора и радиатором должна быть теплопроводная паста, она закрывает неровности в соприкосновении корпуса транзистора и радиатора и так образом увеличивает реальную площадь соприкосновения, что способствует лучшему теплоотводу. Операционный усилитель звука можно заменить практически любым ОУ, например, или каким-то другим вариантом.Диоды 1N4148 можно заменить на КД522 или КД521.

    Стабилитроны 1N4705 можно заменить любыми другими стабилитронами, рассчитанными на напряжение стабилизации 18В, либо каждый из них заменить двумя последовательно включенными стабилитронами, дающими в сумму 18В (например, 9В и 9В). Конденсаторы С1 и С4 должны быть на напряжение не ниже 35В, конденсаторы С7 и С8 на напряжение не ниже 50В. Несмотря на наличие электролитических конденсаторов С7 и С8 по питанию, на выходе источника питания должны быть конденсаторы значительно большей емкости чтобы обеспечить качественное подавление пульсаций переменного тока на выходе источника питания.

    Монтаж выполнен на печатной плате из фольгированного стеклотекстолита с односторонним расположением печатных дорожек (рис.2). Способ изготовления печатной платы может быть любым доступным. Печатные дорожки не обязательно должны точно повторять форму показанных на рисунке, — важно чтобы обеспечивались необходимые соединения.

    Давно, еще года два назад, приобрел я старый советский динамик 35ГД-1. Несмотря на его первоначально плохое состояние, я его восстановил, покрасил в красивый синий цвет и даже сделал для него ящик из фанеры. Большая коробка с двумя фазоинверторами сильно улучшила его акустические качества. Осталось дело за хорошим усилителем, который будет качать эту колонку. Решил сделать не так, как делает большинство людей – купить готовый усилитель D–класса из Китая и установить его. Я решил сделать усилитель сам, но не какой-нибудь общепринятый на микросхеме TDA7294, да и вообще не на микросхеме, и даже не легендарный Ланзар, а очень даже редкий усилитель на полевых транзисторах. Да и в сети очень мало информации об усилителях на полевиках, вот и стало интересно, что это такое и как он звучит.

    Сборка

    Данный усилитель имеет 4 пары выходных транзисторов. 1 пара – 100 Ватт выходной мощности, 2 пары – 200 Ватт, 3 – 300 Ватт и 4, соответственно, 400 Ватт. Мне все 400 Ватт пока не нужны, но я решил поставить все 4 пары, дабы распределить нагрев и уменьшить рассеиваемую каждым транзистором мощность.

    Схема выглядит так:

    На схеме подписаны именно те номиналы компонентов, которые установлены у меня, схема проверена и работает исправно. Печатную плату прилагаю . Плата в формате Lay6.

    Внимание! Все силовые дорожки обязательно залудить толстым слоем припоя, так как по ним будет течь весьма большой ток. Паяем аккуратно, без соплей, флюс отмываем. Силовые транзисторы необходимо установить на теплоотвод. Плюс данной конструкции в том, что транзисторы можно не изолировать от радиатора, а лепить все на один. Согласитесь, это здорово экономит слюдяные теплопроводящие прокладки, ведь на 8 транзисторов их ушло бы 8 штук (удивительно, но факт)! Радиатор является общим стоком всех 8 транзисторов и звуковым выходом усилителя, поэтому при установке в корпус не забудьте как-нибудь изолировать его от корпуса. Несмотря на отсутствие необходимости установки между фланцами транзисторов и радиатором слюдяных прокладок, это место необходимо промазать термопастой.

    Внимание! Лучше сразу всё проверить перед установкой транзисторов на радиатор. Если вы прикрутите транзисторы к радиатору, а на плате будут какие либо сопли или непропаяные контакты, будет неприятно снова откручивать транзисторы и измазываться термопастой. Так что проверяйте всё сразу.

    Биполярные транзисторы: T1 – BD139, T2 – BD140. Тоже нужно прикрутить к радиатору. Они греются не сильно, но все таки греются. Их тоже можно не изолировать от теплоотводов.

    Итак, приступаем непосредственно к сборке. Детали располагаются на плате следующим образом:

    Теперь я прилагаю фото разных этапов сборки усилителя. Для начала вырезаем кусок текстолита по размерам платы.

    Затем накладываем изображение платы на текстолит и сверлим отверстия под радиодетали. Зашкуриваем и обезжириваем. Берем перманентный маркер, запасаемся изрядным количеством терпения и рисуем дорожки (ЛУТом делать не умею, вот и мучаюсь).

    Вооружаемся паяльником, берём флюс, припой и лудим.

    Отмываем остатки флюса, берём мультиметр и прозваниваем на предмет замыкания между дорожками там, где его быть не должно. Если всё в норме, приступаем к монтажу деталей.
    Возможные замены.
    Первым делом я прикреплю список деталей:
    C1 = 1u
    C2, C3 = 820p
    C4, C5 = 470u
    C6, C7 = 1u
    C8, C9 = 1000u
    C10, C11 = 220n

    D1, D2 = 15V
    D3, D4 = 1N4148

    OP1 = КР54УД1А

    R1, R32 = 47k
    R2 = 1k
    R3 = 2k
    R4 = 2k
    R5 = 5k
    R6, R7 = 33
    R8, R9 = 820
    R10-R17 = 39
    R18, R19 = 220
    R20, R21 = 22k
    R22, R23 = 2.7k
    R24-R31 = 0.22

    T1 = BD139
    T2 = BD140
    T3 = IRFP9240
    T4 = IRFP240
    T5 = IRFP9240
    T6 = IRFP240
    T7 = IRFP9240
    T8 = IRFP240
    T9 = IRFP9240
    T10 = IRFP240

    Первым делом можно заменить операционный усилитель на любой другой, даже импортный, с аналогичным расположением выводов. Конденсатор C3 нужен для подавления самовозбуждения усилителя. Можно поставить и побольше, что я и сделал впоследствии. Стабилитроны любые на 15 В и мощностью от 1 Вт. Резисторы R22, R23 можно ставить исходя из расчета R=(Uпит.-15)/Iст., где Uпит. – напряжение питания, Iст. – ток стабилизации стабилитрона. Резисторы R2, R32 отвечают за коэффициент усиления. С данными номиналами он где то 30 – 33. Конденсаторы C8, C9 – емкости фильтра – можно ставить от 560 до 2200 мкФ с напряжением не ниже чем Uпит.* 1.2 дабы не эксплуатировать их на пределе возможностей. Транзисторы T1, T2 – любая комплементарная пара средней мощности, с током от 1 А, например наши КТ814-815, КТ816-817 или импортные BD136-135, BD138-137, 2SC4793-2SA1837. Истоковые резисторы R24-R31 можно ставить и на 2 Вт, хоть и нежелательно, с сопротивлением от 0.1 до 0.33 ом. Силовые ключи менять не желательно, хотя можно и IRF640-IRF9640 или IRF630-IRF9630; можно на транзисторы с аналогичными пропускаемыми токами, емкостями затворов и, разумеется, таким же расположением выводов, хотя если паять на проводках, значение это не имеет. Больше менять тут вроде и нечего.

    Первый запуск и настройка.

    Первый запуск усилителя производим через страховочную лампу в разрыв сети 220 В. Обязательно закорачиваем вход на землю и не подключаем нагрузку. В момент включения лампа должна вспыхнуть и погаснуть, причем погаснуть полностью: спираль не должна светиться вообще. Включаем, держим секунд 20, затем выключаем. Проверяем, нет ли нагрева чего-либо (хотя если лампа не горит, вряд ли что-нибудь греется). Если действительно ничего не греется, включаем снова и меряем постоянное напряжение на выходе: оно должно быть в пределах 50 – 70 мВ. У меня, к примеру, 61.5 мВ. Если всё в пределах нормы, подключаем нагрузку, подаём сигнал на вход и слушаем музыку. Не должно быть никаких помех, посторонних гулов и т. п. Если ничего этого нет, переходим к настройке.

    Настраивается всё это дело крайне просто. Необходимо лишь выставить ток покоя выходных транзисторов с помощью вращения движка подстроечного резистора. Он должен быть примерно 60 – 70 мА для каждого транзистора. Делается это так же как и на Ланзаре. Ток покоя считается по формуле I = Uпад./R, где Uпад. – падение напряжения на одном из резисторов R24 – R31, а R – сопротивление этого самого резистора. Из этой формулы выводим напряжение падение на резисторе, необходимое для установки такого тока покоя. Uпад. = I*R. Например в моем случае это = 0.07*0.22 = где то 15 мВ. Ток покоя выставляется на “тёплом” усилителе, то есть радиатор должен быть тёплым, усилитель должен поиграть несколько минут. Усилитель прогрелся, отключаем нагрузку, закорачиваем вход на общий, берем мультиметр и проводим ранее описанную операцию.

    Характеристики и особенности:

    Напряжение питания – 30-80 В
    Рабочая температура – до 100-120 град.
    Сопротивление нагрузки – 2-8 Ом
    Мощность усилителя – 400 Вт/4 Ом
    КНИ – 0.02-0.04% при мощности 350-380 Вт
    Коэффициент усиления – 30-33
    Диапазон воспроизводимых частот – 5-100000 Гц

    На последнем пункте стоит остановиться подробнее. Использование этого усилителя с шумящими тембрблоками, такими как TDA1524, может повлечь за собой необоснованное на первый взгляд потребление энергии усилителем. На самом деле это усилитель воспроизводит частоты помех, не слышные нашему уху. Может показаться, что это самовозбуждение, но скорее всего это именно помехи. Тут стоит отличать помехи, не слышимые ухом от реального самовозбуждения. Я сам столкнулся с этой проблемой. Изначально в качестве предварительного усилителя операционник TL071. Это очень хороший высокочастотный импортный ОУ с малошумящим выходом на полевых транзисторах. Он может работать на частотах до 4 МГц – этого с запасом хватает и для воспроизведения частот помех и для самовозбуждения. Что делать? Один хороший человек, спасибо ему огромное, посоветовал мне заменить операционник на другой, менее чувствительный и воспроизводящий меньший диапазон частот, который просто не может работать на частоте самовозбуждения. Поэтому я купил наш отечественный КР544УД1А, поставил и… ничего не поменялось. Это всё натолкнуло меня на мысль, что шумят переменные резисторы тембрблока. Движки резисторов немного “шуршат”, что и вызывает помехи. Убрал тембрблок и шум пропал. Так что это не самовозбуждение. С данным усилителем нужно ставить малошумящий пассивный тембрблок и транзисторный предусилитель дабы избежать вышеперечисленного.

© 2024 ermake.ru -- Про ремонт ПК - Информационный портал