Xor через базовые операции. Основные логические операции (and, or, xor, not)

Главная / Мобильные устройства

В этой статье я расскажу вам о том, как работают битовые операции. С первого взгляда они могут показаться вам чем-то сложным и бесполезным, но на самом деле это совсем не так. В этом я и попытаюсь вас убедить.

Введение

Побитовые операторы проводят операции непосредственно на битах числа, поэтому числа в примерах будут в двоичной системе счисления.

Я расскажу о следующих побитовых операторах:

  • | (Побитовое ИЛИ (OR)),
  • & (Побитовое И (AND)),
  • ^ (Исключающее ИЛИ (XOR)),
  • ~ (Побитовое отрицание (NOT)),
  • << (Побитовый сдвиг влево),
  • >> (Побитовый сдвиг вправо).

Битовые операции изучаются в дискретной математике, а также лежат в основе цифровой техники, так как на них основана логика работы логических вентилей - базовых элементов цифровых схем. В дискретной математике, как и в цифровой технике, для описания их работы используются таблицы истинности. Таблицы истинности, как мне кажется, значительно облегчают понимание битовых операций, поэтому я приведу их в этой статье. Их, тем не менее, почти не используют в объяснениях побитовых операторов высокоуровневых языков программирования.

О битовых операторах вам также необходимо знать:

  1. Некоторые побитовые операторы похожи на операторы, с которыми вы наверняка знакомы (&&, ||). Это потому, что они на самом деле в чем-то похожи. Тем не менее, путать их ни в коем случае нельзя.
  2. Большинство битовых операций являются операциями составного присваивания.

Побитовое ИЛИ (OR)

Побитовое ИЛИ действует эквивалентно логическому ИЛИ, но примененному к каждой паре битов двоичного числа. Двоичный разряд результата равен 0 только тогда, когда оба соответствующих бита в равны 0. Во всех других случаях двоичный результат равен 1. То есть, если у нас есть следующая таблица истинности:

38 | 53 будет таким:

A 0 0 1 0 0 1 1 0
B 0 0 1 1 0 1 0 1
A | B 0 0 1 1 0 1 1 1

В итоге мы получаем 110111 2 , или 55 10 .

Побитовое И (AND)

Побитовое И - это что-то вроде операции, противоположной побитовому ИЛИ. Двоичный разряд результата равен 1 только тогда, когда оба соответствующих бита операндов равны 1. Другими словами, можно сказать, двоичные разряды получившегося числа - это результат умножения соответствующих битов операнда: 1х1 = 1, 1х0 = 0. Побитовому И соответствует следующая таблица истинности:

Пример работы побитового И на выражении 38 & 53:

A 0 0 1 0 0 1 1 0
B 0 0 1 1 0 1 0 1
A & B 0 0 1 0 0 1 0 0

Как результат, получаем 100100 2 , или 36 10 .

С помощью побитового оператора И можно проверить, является ли число четным или нечетным. Для целых чисел, если младший бит равен 1, то число нечетное (основываясь на преобразовании двоичных чисел в десятичные). Зачем это нужно, если можно просто использовать %2 ? На моем компьютере, например, &1 выполняется на 66% быстрее. Довольно неплохое повышение производительности, скажу я вам.

Исключающее ИЛИ (XOR)

Разница между исключающим ИЛИ и побитовым ИЛИ в том, что для получения 1 только один бит в паре может быть 1:

Например, выражение 138^43 будет равно…

A 1 0 0 0 1 0 1 0
B 0 0 1 0 1 0 1 1
A ^ B 1 0 1 0 0 0 0 1

… 10100001 2 , или 160 10

С помощью ^ можно поменять значения двух переменных (имеющих одинаковый тип данных) без использования временной переменной.

Также с помощью исключающего ИЛИ можно зашифровать текст. Для этого нужно лишь итерировать через все символы, и ^ их с символом-ключом. Для более сложного шифра можно использовать строку символов:

String msg = "This is a message"; char message = msg.toCharArray(); String key = ".*)"; String encryptedString = new String(); for(int i = 0; i< message.length; i++){ encryptedString += message[i]^key.toCharArray(); }

Исключающее ИЛИ не самый надежный способ шифровки, но его можно сделать частью шифровального алгоритма.

Побитовое отрицание (NOT)

Побитовое отрицание инвертирует все биты операнда. То есть, то что было 1 станет 0, и наоборот.

Вот, например, операция ~52:

A 0 0 1 1 0 1 0 0
~A 1 1 0 0 1 0 1 1

Результатом будет 203 10

При использовании побитового отрицания знак результата всегда будет противоположен знаку исходного числа (при работе со знаковыми числами). Почему так происходит, узнаете прямо сейчас.

Дополнительный код

Здесь мне стоит рассказать вам немного о способе представления отрицательных целых чисел в ЭВМ, а именно о дополнительном коде (two’s complement). Не вдаваясь в подробности, он нужен для облегчения арифметики двоичных чисел.

Главное, что вам нужно знать о числах, записанных в дополнительном коде - это то, что старший разряд является знаковым. Если он равен 0, то число положительное и совпадает с представлением этого числа в прямом коде, а если 1 - то оно отрицательное. То есть, 10111101 - отрицательное число, а 01000011 - положительное.

Чтобы преобразовать отрицательное число в дополнительный код, нужно инвертировать все биты числа (то есть, по сути, использовать побитовое отрицание) и добавить к результату 1.

Например, если мы имеем 109:

A 0 1 1 0 1 1 0 1
~A 1 0 0 1 0 0 1 0
~A+1 1 0 0 1 0 0 1 1

Представленным выше методом мы получаем -109 в дополнительном коде.
Только что было представлено очень упрощенное объяснение дополнительного кода, и я настоятельно советую вам детальнее изучить эту тему.

Побитовый сдвиг влево

Побитовые сдвиги немного отличаются от рассмотренных ранее битовых операций. Побитовый сдвиг влево сдвигает биты своего операнда на N количество битов влево, начиная с младшего бита. Пустые места после сдвига заполняются нулями. Происходит это так:

A 1 0 1 1 0 1 0 0
A<<2 1 1 0 1 0 0 0 0

Интересной особенностью сдвига влево на N позиций является то, что это эквивалентно умножению числа на 2 N . Таким образом, 43<<4 == 43*Math.pow(2,4) . Использование сдвига влево вместо Math.pow обеспечит неплохой прирост производительности.

Побитовый сдвиг вправо

Как вы могли догадаться, >> сдвигает биты операнда на обозначенное количество битов вправо.

Если операнд положительный, то пустые места заполняются нулями. Если же изначально мы работаем с отрицательным числом, то все пустые места слева заполняются единицами. Это делается для сохранения знака в соответствии с дополнительным кодом, объясненным ранее.

Так как побитовый сдвиг вправо - это операция, противоположная побитовому сдвигу влево, несложно догадаться, что сдвиг числа вправо на N количество позиций также делит это число на 2 N . Опять же, это выполняется намного быстрее обычного деления.

Вывод

Итак, теперь вы знаете больше о битовых операциях и не боитесь их. Могу предположить, что вы не будете использовать >>1 при каждом делении на 2. Тем не менее, битовые операции неплохо иметь в своем арсенале, и теперь вы сможете воспользоваться ими в случае надобности или же ответить на каверзный вопрос на собеседовании.

Часто, для того чтобы продемонстрировать ограниченные возможности однослойных персептронов при решении задач прибегают к рассмотрению так называемой проблемы XOR – исключающего ИЛИ .

Суть задачи заключаются в следующем. Дана логическая функция XOR – исключающее ИЛИ. Это функция от двух аргументов, каждый из которых может быть нулем или единицей. Она принимает значение , когда один из аргументов равен единице, но не оба, иначе . Проблему можно проиллюстрировать с помощью однослойной однонейронной системы с двумя входами, показанной на рисунке ниже.

Обозначим один вход через , а другой через , тогда все их возможные комбинации будут состоять из четырех точек на плоскости. Таблица ниже показывает требуемую связь между входами и выходом, где входные комбинации, которые должны давать нулевой выход, помечены и , единичный выход – и .

Точки Значение Значение Требуемый выход
0 0 0
1 0 1
0 1 1
1 1 0

Один нейрон с двумя входами может сформировать решающую поверхность в виде произвольной прямой. Для того, чтобы сеть реализовала функцию XOR, заданную таблицей выше, нужно расположить прямую так, чтобы точки были с одной стороны прямой, а точки – с другой. Попытавшись нарисовать такую прямую на рисунке ниже, убеждаемся, что это невозможно. Это означает, что какие бы значения ни приписывались весам и порогу, однослойная нейронная сеть неспособна воспроизвести соотношение между входом и выходом, требуемое для представления функции XOR.

Однако функция XOR легко формируется уже двухслойной сетью, причем многими способами. Рассмотрим один из таких способов. Модернизуем сеть на рисунке, добавив еще один скрытый слой нейронов:

Отметим, что данная сеть дана как есть, т.е. можно считать, что она уже обучена. Цифры над стрелками показывают значения синаптических весов. В качестве функции активации применим функцию единичного скачка с порогом , имеющую следующий график:

Тогда результат работы такой нейронной сети можно представить в виде следующей таблицы:

Точки Значение Значение Требуемый выход
0 0 0 0 0 0
1 0 1 1 0 1
0 1 1 0 1 1
1 1 0 0 0 0

Каждый из двух нейрон первого слоя формирует решающую поверхность в виде произвольной прямой (делит плоскость на две полуплоскости), а нейрон выходного слоя объединяет эти два решения, образуя решающую поверхность в виде полосы, образованной параллельными прямыми нейронов первого слоя:

Нейронная сеть, используемая в этой статье для решения задачи XOR, примитивна и не использует всех возможностей многослойных сетей. Очевидно, что многослойные нейронные сети обладают большей представляющей мощностью, чем однослойные, только в случае присутствия нелинейности. А в данной сети применена пороговая линейная функция активации. Такую сеть нельзя будет обучить, например, применив алгоритм обратного распространения ошибки.

Абсолютно все цифровые микросхемы состоят из одних и тех же логических элементов – «кирпичиков» любого цифрового узла. Вот о них мы и поговорим сейчас.

Логический элемент – это такая схемка, у которой несколько входов и один выход. Каждому состоянию сигналов на входах, соответствует определенный сигнал на выходе.

Итак, какие бывают элементы?

Элемент «И» (AND)

Иначе его называют «конъюнктор».

Для того, чтобы понять как он работает, нужно нарисовать таблицу, в которой будут перечислены состояния на выходе при любой комбинации входных сигналов. Такая таблица называется «таблица истинности ». Таблицы истинности широко применяются в цифровой технике для описания работы логических схем.

Вот так выглядит элемент «И» и его таблица истинности:

Поскольку вам придется общаться как с русской, так и с буржуйской тех. документацией, я буду приводить условные графические обозначения (УГО) элементов и по нашим и по не нашим стандартам.

Смотрим таблицу истинности, и проясняем в мозгу принцип. Понять его не сложно: единица на выходе элемента «И» возникает только тогда, когда на оба входа поданы единицы. Это объясняет название элемента: единицы должны быть И на одном, И на другом входе.

Если посмотреть чуток иначе, то можно сказать так: на выходе элемента «И» будет ноль в том случае, если хотя бы на один из его входов подан ноль. Запоминаем. Идем дальше.

Элемент «ИЛИ» (OR)

По другому, его зовут «дизъюнктор».

Любуемся:

Опять же, название говорит само за себя.

На выходе возникает единица, когда на один ИЛИ на другой ИЛИ на оба сразу входа подана единица. Этот элемент можно назвать также элементом «И» для негативной логики: ноль на его выходе бывает только в том случае, если и на один и на второй вход поданы нули.

Элемент «НЕ» (NOT)

Чаще, его называют «инвертор».

Надо чего-нибудь говорить по поводу его работы?

Элемент «И-НЕ» (NAND)

Элемент И-НЕ работает точно так же как «И», только выходной сигнал полностью противоположен. Там где у элемента «И» на выходе должен быть «0», у элемента «И-НЕ» - единица. И наоборот. Э то легко понять по эквивалентной схеме элемента:

Элемент «ИЛИ-НЕ» (NOR)

Та же история – элемент «ИЛИ» с инвертором на выходе.

Следующий товарищ устроен несколько хитрее:
Элемент «Исключающее ИЛИ» (XOR)

Он вот такой:

Операция, которую он выполняет, часто называют «сложение по модулю 2». На самом деле, на этих элементах строятся цифровые сумматоры.

Смотрим таблицу истинности. Когда на выходе единицы? Правильно: когда на входах разные сигналы. На одном – 1, на другом – 0. Вот такой он хитрый.

Эквивалентная схема примерно такая:

Ее запоминать не обязательно.

Собственно, это и есть основные логические элементы. На их основе строятся абсолютно любые цифровые микросхемы. Даже ваш любимый Пентиум 4.

Ну и напоследок – несколько микросхем, внутри которых содержатся цифровые элементы. Около выводов элементов обозначены номера соответствующих ног микросхемы. Все микросхемы, перечисленные здесь, имеют 14 ног. Питание подается на ножки 7 (-) и 14 (+). Напряжение питания – смотри в таблице в предыдущем параграфе.

Обозначается оборотом речи «либо…, либо…» Составное утверждение «либо A, либо B» считается истинным, когда истинно либо A, либо B, но не оба сразу; в противном случае составное утверждение ложно.

Т.е. результат истинен (равен 1), если A не равно B (A≠B).

Эту операцию нередко сравнивают с дизъюнкцией потому, что они очень похожи по свойствам, и обе имеют сходство с союзом «или» в повседневной речи. Сравните правила для этих операций:

1. истинно, если истинно или , или оба сразу.

2. истинно, если истинно или , но не оба сразу.

Операция исключает последний вариант («оба сразу») и по этой причине называется исключающим «ИЛИ». Неоднозначность естественного языка заключается в том, что союз «или» может применяться в обоих случаях.

5. Импликация (логическое следование) образуется соединением двух высказываний в одно с помощью оборота речи «если …, то ….».

Запись: А®В

Составное высказывание, образованное с помощью операции импликации, ложно тогда и только тогда, когда из истинной предпосылки (первого высказывания) следует ложный вывод (второе высказывание).

Т.е. если из 1 следует 0, то результат – 0, в остальных случаях – 1.

Например, высказывание «Если число делится на 10, то оно делится на 5» истинно, т.к. истинны и первое и второе высказывание.

Высказывание «Если число делится на 10, то оно делится на 3» ложно, т.к. из истинной предпосылки делается ложный вывод.

"Данный четырёхугольник - квадрат" (А ) и "Около данного четырёхугольника можно описать окружность" (В ). Тогда составное высказывание , читается как "Если данный четырёхугольник квадрат, то около него можно описать окружность".

В обычной речи связка "если..., то" описывает причинно-следственную связь между высказываниями. Но в логических операциях смысл высказываний не учитывается. Рассматривается только их истинность или ложность. Поэтому не надо смущаться "бессмысленностью" импликаций, образованных высказываниями, совершенно не связанными по содержанию. Например, такими: "если президент США - демократ, то в Африке водятся жирафы", "если арбуз - ягода, то в бензоколонке есть бензин".

6. Эквивалентность (логическое равенство, ~ º Û) образуется соединением двух высказываний в одно с помощью оборота речи « …тогда и только тогда, когда...»

Составное высказывание, образованное операцией эквивалентности, истинно тогда и только тогда, когда оба высказывания одновременно либо ложны, либо истинны.

Например, высказывание «Компьютер может производить вычисления тогда и только тогда, когда он включен» и «Компьютер не может производить вычисления тогда и только тогда, когда он не включен» - истинны, поскольку оба простых высказывания одновременно истинны.


Таблицы истинности

Для каждого составного высказывания (логической функции) можно построить таблицу истинности, которая определяет его истинность или ложность при всех возможных комбинациях исходных значений простых высказываний.

Таблица истинности это табличное представление логической схемы (операции), в котором перечислены все возможные сочетания значений истинности входных сигналов (операндов) вместе со значением истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

Отразим выше рассмотренные логические операции в таблице истинности:

В алгебре высказываний все логические функции путем логических преобразований могут быть сведены к трем базовым: логическому сложению, логическому умножению и логическому отрицанию.

Докажем, что операция импликация А®В равносильна логическому выражению:

Операция исключающее ИЛИ (неравнозначность, сложение по модулю два) обозначается символом и отличается от логического ИЛИ только приA=1 и B=1.

Таким образом, неравнозначность двух высказываний Х1 и Х2 называют такое высказывание Y, которое истинно тогда и только тогда, когда одно из этих высказываний истинно, а другое ложно.

Определение данной операции может быть записано в виде таблицы истинности (таблица 6):

Таблица 6 – Таблица истинности операции «ИСКЛЮЧАЮЩЕЕ ИЛИ»

Как видно из таблицы 6, логика работы элемента соответствует его названию.

Это тот же элемент «ИЛИ» с одним небольшим отличием. Если значение на обоих входах равно логической единице, то на выходе элемента «ИСКЛЮЧАЮЩЕЕ ИЛИ», в отличие от элемента «ИЛИ», не единица, а ноль.

Операция «ИСКЛЮЧАЮЩЕЕ ИЛИ» фактически сравнивает на совпадение два двоичных разряда.

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет своё название и обозначение (таблица 7).

Таблица 7 – Основные логические операции

Обозначение

операции

Читается

Название операции

Альтернативные обозначения

Отрицание (инверсия)

Черта сверху

Конъюнкция (логическое умножение)

Дизъюнкция (логическое сложение)

Если … то

Импликация

Тогда и только тогда

Эквиваленция

Либо … либо

ИСКЛЮЧАЮЩЕЕ ИЛИ (сложение по модулю 2)

  1. Порядок выполнения логических операций в сложном логическом выражении

Система логических операций инверсии, конъюнкции, дизъюнкции позволяет построить сколь угодно сложное логическое выражение.

При вычислении значения логического выражения принят определённый порядок выполнения логических операций.

1. Инверсия.

2. Конъюнкция.

3. Дизъюнкция.

4. Импликация.

5. Эквивалентность.

Для изменения указанного порядка выполнения операций используются скобки.

  1. Логические выражения и таблицы истинности

    1. Логические выражения

Каждое составное высказывание можно выразить в виде формулы (логического выражения), в которую входят логические переменные, обозначающие высказывания, и знаки логических операций, обозначающие логические функции.

Для записи составного высказывания в виде логического выражения на формальном языке (языке алгебры логики) в составном высказывании нужно выделить простые высказывания и логические связи между ними.

Запишем в форме логического выражения составное высказывание «(2·2=5 или 2∙2=4) и (2∙2≠5 или 2∙2 4)».

Проанализируем составное высказывание. Оно содержит два простых высказывания:

А = «2 2=5»-ложно (0),

В = «2 2=4»-истинно (1).

Тогда составное высказывание можно записать в следующей форме:

«(А или В ) и (Ā или В )».

Теперь необходимо записать высказывание в форме логического выражения с учётом последовательности выполнения логических операций. При выполнении логических операций определён следующий порядок их выполнения:

инверсия, конъюнкция, дизъюнкция.

Для изменения указанного порядка могут использоваться скобки:

F = (A v В ) & (Ā v В ).

Истинность или ложность составных высказываний можно определять чисто формально, руководствуясь законами алгебры высказываний, не обращаясь к смысловому содержанию высказываний.

Подставим в логическое выражение значения логических переменных и, используя таблицы истинности базовых логических операций, получим значение логической функции:

F = (A v В) & (Ā v В) = (0 v 1) & (1 v 0) = 1 & 1 = 1.

      Таблицы истинности

Таблицы, в которых логические операции отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний, называются таблицами истинности.

Простые высказывания обозначаются переменными (например, A и B).

При построении таблиц истинности целесообразно руководствоваться определённой последовательностью действий:

    необходимо определить количество строк в таблице истинности. Оно равно количеству возможных комбинаций значений логических переменных, входящих в логическое выражение. Если количество логических переменных равно п, то:

количество строк = 2 n .

В нашем случае логическая функция

имеет 2 переменные и, следовательно, количество строк в таблице истинности должно быть равно 4;

    необходимо определить количество столбцов в таблице истинности, которое равно количеству логических переменных плюс количество логических операций.

В нашем случае количество переменных равно двум: А и В, а количество логических операций - пяти (таблица 8), то есть количество столбцов таблицы истинности равно семи;

    необходимо построить таблицу истинности с указанным количеством строк и столбцов, обозначить столбцы и внести в таблицу возможные наборы значений исходных логических переменных;

    необходимо заполнить таблицу истинности по столбцам, выполняя базовые логические операции в необходимой последовательности и в соответствии с их таблицами истинности.

Теперь мы можем определить значение логической функции для любого набора значений логических переменных.

Таблица 8 – Таблица истинности логической функции

© 2024 ermake.ru -- Про ремонт ПК - Информационный портал